官方商城

产品中心

智芯研报 天地一体卫星互联网下一代通信技术赛点

时间: 2024-02-24 00:35:57 |   作者: 产品中心

  • 产品特点

  我国空天商业通信产业相比Starlink等对手有相当差距,国家已经通过“天地一体化信息网络”进行布局,未来有望加速整合产业资源奋起直追。我国对商业卫星产业规划及低轨小卫星组网技术的探索起步相对较晚,目前国企和民营的卫星星座计划整体呈现多点开花、分兵而战的格局,与Starlink的万星规划存在产业链资源的较大差距。在制造整合和成本控制方面,诸如可复用火箭、星间链路激光通信、星群通信协议、Ku/Ka特别是Q/V波段射频器件、低成本相控阵天线、星载运算芯片等软硬件技术亟待提升和实践。差距客观存在,但空天通信产业又意义空前。回顾历史,我国前有配合大飞机专项成立的中国商飞、后有两机专项设立的中国航发,为了更快更好的调动整合国家队资源,迎战强敌,专业机构分析,国家有必要以中国2030科技重大专项“天地一体化信息网络”为产业先导和技术布局,加速相关资源的整合。

  低轨卫星的研发、制造、发射等成本高昂,已成为制约业内公司可持续发展的主要的因素。1997-1999三年间,铱星(Iridium)、全球星(Globalstar)和轨道通信(Orbcomm)等卫星移动通讯公司密集发射卫星完善产业布局,但三家公司在随后三年里因成本管控不当先后申请破产保护。铱星公司66颗卫星组成的通信系统总成本共计50亿美元,持续的高成本运营不堪重负,最终由于无法偿还8亿美元贷款和9000万美元的利息而宣告破产,同期竞争对象全球星、轨道通信卫星也面临破产威胁。通过业务重组以及定位调整度过破产危机后,2017年铱星公司启动了铱星2代(IridiumNEXT)的星座替换,同为66颗卫星的星座网络,但此次耗资30亿美元,仅为一代的60%,却有着更好的数据速率和语音质量,也兼容老一代的通信终端和业务。尽管如此,目前多数在运营的卫星通信公司,由于高昂的成本,一直只能在盈利边缘徘徊。高昂的制造、发射、经营成本一直以来是制约卫星通信系统持续盈利并实现商业化发展的主要因素。

  SpaceX和Starlink在成本方面创造了前所未有的颠覆性记录。拖累全球最大卫星服务企业Intelsat运营的是一颗名为Intelsat29e(IS-29e)的故障卫星,该卫星长7米,全重6.5吨,造价4亿美元,高额成本的压力之下,该卫星一旦失效可能波及整个公司,更面临FCC拍卖C波段的窘境。基于此,Starlink计划的投资所需成本就显得很重要,摩根士丹利估算Starlink卫星制造成本100万美元/颗,发射成本5000万美元/次,猎鹰9运载能力达到60颗/次,同时SpaceXCEO马斯克和COO格温·肖特维尔透露称:在复用一级火箭和整流罩的乐观状态下,单颗Starlink卫星制造成本低于50万美元,单次发射成本降至1500万美元。根据这一标准,完全部署4.2万颗Starlink卫星,需投入卫星制造成本210亿美元,发射成本105亿美元。

  截至3月20日,SpxceX将Starlink第六批60颗卫星送入轨道,预计在2020年中向北美提供上网服务。根据Starlink规划,12批次卫星发射成功后,有望在今年年中开始向加拿大和美国北部提供卫星上网服务。并在发射24个批次的卫星之后,面向全球互联网消费的人提供卫星上网服务。2月7日腾讯援引外国媒体报道,SpaceX公司计划剥离太空互联网业务Starlink,对其寻求IPO。卫星频道和轨道资源作为全球稀缺资源,现在已经成为世界各国的争夺热点,国内近年来商业卫星产业的推进也是如火如荼。

  我国卫星制造成本大幅落后于StarLink。2019年中国航天大会商业航天产业国际论坛上,国防科技工业局副局长、国家航天局副局长在《2018中国商业航天产业投资报告》中披露,目前国内已发布的星座计划达到20多项,计划涉及的卫星数量有3100多颗,批产后预期制造成本429万美元/颗。根据上述信息判断,按批产后的预期制造成本计算,国内单星造价也达到了美国的16倍,超过一个数量级。统筹卫星制造产业链全面协同,并发展货架级组件产品,对于国内降低卫星制造成本具有较高的现实意义和迫切性。

  我国卫星发射成本大幅落后于SpaceX。我国最具商业优势之一的快舟一号甲火箭卫星发射成本1万美元/公斤,运载能力等同于1颗Starlink卫星/次,对比猎鹰9卫星发射成本0.22万美元/公斤,25万美元/颗,单颗发射成本仅为我国的1/24。各产业链成本的巨大差距(超过一个数量级)对该行业提出更为紧迫的发展要求。

  单次发射数量方面,我国同样大幅落后。目前最好成绩是2015年长征六号运载火箭创下的一箭20星,SpaceX的Starlink计划中,猎鹰运载火箭发射能力到达一箭60星,如果简单看数量是我国三倍。一箭多星的发射方式充分的利用运载火箭的运载能力余量,提高多任务执行能力,逐步降低成本,其中要解决的关键技术首先是防止分离瞬间大量卫星释放时的碰撞问题,这需要为每一颗卫星制定最佳分离路线和分离时刻,实现多颗卫星“各行其道”,确保按照预定程序顺利出舱,不发生碰撞。其次是防止卫星释放过程中火箭结构角度和重心分布的变化,姿态控制管理系统必须在每一颗卫星的分离瞬间保证火箭飞行稳定。最后,避免不同电子内部电子设备产生无线电干扰也是技术人员一定要解决的重要问题。

  根据马斯克提交美国联邦通信委员会的公开资料显示,五大高精尖黑科技将应用于卫星和火箭制造,空天与地面通信等领域,技术加持之下产业注入更强动力。

  (1)通信系统:星间链路激光通信是SpaceX保密层级最高的核心技术,有望大幅度的提高空天与地面数据传输速率。SpaceX提交FCC的公开文件里披露了卫星性能、覆盖分析、干扰分析,碰撞风险等多维度信息,但相关细节并未进一步展示。卫星+互联网(5G/6G)大背景下,此前Mb/s级别数据传输速率已无法承载,需大幅度的提高至10-100Gb/s级别。激光通信作为此背景下的关键技术之一,其高频率、宽频带的独特性能,单通道的数据传输达20Gb/s以上,随着波分复用等技术的研发进步通信容量仍有广阔上升空间。

  激光结合IP-less协议拉动通信速率飞速升级的同时,相关配套软硬件实现更新换代。IP-less协议中,万余颗卫星各自作为服务端的去中心化P2P通信架构与区块链技术极度吻合,激光通信在这一架构中,借助半导体激光器的超小的外形体积、极高的转换效率、结构相对比较简单等优点,其发射和接收望远镜口径更小、重量更轻、通信质量更高。我国由于起步较晚,目前在空间激光通信领域与欧美、日本等国际领先水平存在一定差距。

  (2)推进系统:Starlink首次采用氪离子推进系统,优异性能助力商业航天高水平发展。一颗Starlink卫星配备4台霍尔离子电推,该技术推力小、比冲高。相比传统的化学推进方式,离子推力器工质质量小,在已实用化的推进技术中最为适合长距离航行。相比氧化化合物的推进剂,离子推进剂质量更轻,这对于极致追求发射成本和在轨成本的商业航天至关重要,也对美国的航天工业产能提出了挑战,有报道称6次发射360颗卫星所需的1440台霍尔电推已超过美国航天工业一年的产能。

  (3)能源系统:单个太阳能电池阵设计,转换效率高同时极大简化系统。马斯克在Starlink计划上依然坚持钟爱的“第一原理”:卫星通信本质上是卫星所能产生的太阳能利用效率的问题。Starlink单个太阳能电池阵中,卫星太阳帆板砷化镓电池片转换效率为30~35%,组件厚度小于1毫米,具备良好高单位体积内的包含的能量以及特殊环境耐受性能,标准部件的使用简化了制造和集成过程。

  (4)运载火箭:高科技加持引发讨论,传统火箭发射产业迎来颠覆性变革。SpaceX火箭因其脑洞大开的技术在航天界产生诸多讨论,争议大多分布在在回收技术和多发动机控制技术,三个猎鹰9号火箭组成的猎鹰9重型火箭,共计搭载27台发动机,这是人类从未持续成功过的设计。SpaceX通过增加火箭有效载荷和复用次数,充分节约商业成本,正在深刻影响着传统火箭发射产业。

  (5)射频技术:Starlink向Q/V频段发起冲击,相控阵射频技术面临提性能降成本的新挑战。由于通讯容量和资源频率有限,Starlink的通信波段正在实现从传统Ku/Ka波段到Q/V波段的过渡,Q/V波段资源丰富,V波段仍然有大量的连续大宽带可选择使用,由于雨衰现象的存在,技术实现对星上射频器件的要求也进一步加大,首批Starlink卫星底部安装的4套相控阵天线系统,能轻松实现极高的数据量发送和转发,同时据称成本也相比常规容量通信卫星低一个数量级。

  硬核科技之外,商用现货产品的合理降级运用大幅降造成本,也是关键之一。电子元器件按照温度、抗辐射、抗干扰、精密度等维度,大致分为5类:商业级、工业级、汽车工业级、军工级、宇航级。由于商用器件随着半导体技术的突飞猛进,以及航天器对微电子性能要求的提高,通过系统模块设计的方式,在可接受、预测、控制的范围内降级使用COTS(Commercial-OfftheShelf,商用现货产品)是重要的研究方向,20世纪90年中期至现在,COTS器件的空间应用研究处于全面发展阶段,而我国由于传统航天对成本不够敏感,该领域尚处于起步阶段。

  3. 相较于传统卫星计划,三大关键技术助力卫星+5G/6G地面蜂窝通信融合

  除了卫星和火箭制造,这一轮商业低轨卫星计划和上一轮商业卫星计划相比,更主要区别是和5G/6G地面蜂窝通信技术的融合,这方面也有几项关键技术:

  (1)空中接口传输技术融合5G推动天地一体化进程,5G标志性技术适用性面临挑战。卫星网络在规划之初便纳入5G整体框架,但目前3GPP、IMT-2020等组织工作仍有待进一步推进。天地一体化信息网络依靠空中接口传输技术简化终端和芯片成本,降低网络切换时上下游的开销,部署星地频谱,实现星地融合。其中MIMO等5G标志性技术由于天线阵元几何间距有限、收发信号相关性强,很难获得规模效益,域码方案的复杂性也限制了用户在高速运动卫星间的快速切换。

  (2)基于“大时延带宽积”的端到端传输控制和拥塞管理技术重要性愈发凸显。首先,天地一体化网络具有非常明显的“大时延带宽积”特性,它所提供的对空间用户的微波或激光中继,用户速率可达2.5Gbit/s甚至更高。其次,卫星通信本身就具有大时延特征,叠加随着“跳数”增大持续不断的增加的星座路由时延,来自不一样的区域的业务在落地时的时延上将具有非常明显的差异。最后,星上用于排队缓冲的存储器相对地面非常有限,使得每个节点面对突发、拥塞时存在更大的分组丢失风险。

  (3)边缘计算技术化解数据传输处理矛盾,所涉有关技术仍需突破。目前规划的天地一体化信息网络的带宽资源有限,若大量数据经过网络回送后方服务器,其带宽开销、时延和费用均难以接受。边缘计算技术将数据通过身边的“节点”进行计算、抽象、存储和压缩,从而减小向内传输以及组织内节点计算带来的开销,同时减轻云端处理数据带来的安全问题,但该技术仍需在面向多种异构边缘节点复杂环境的应用可编程性、命名规则、数据抽象、服务管理、数据隐私保护和相关科学理论等领域取得突破。

  这一轮低轨商业卫星计划的发展最深刻的改变在于资本和企业家都意识到若不与主流民用通信在网络和客户端进行融合,卫星互联网存在的价值将很难真正实现。

  针对低轨卫星互联网,我国其实早有顶层制设计。16个国家科技重点专项和科学技术创新2030重点项目为重构我国的商业低轨卫星互联网国家队指明了方向和措施。

  1. 以“天地一体化信息网络”为先导和主干,国家有望从顶层设计布局空天通信产业

  我国共有16个科技重大专项,旨在完成国家战略目标。国家科技重大专项是通过核心技术突破和资源集成,在一定时限内完成的重大战略产品、关键共性技术和重大工程。《国家中长期科学和技术发展规划纲要(2006-2020)》确定了16个重大专项(其中10个为民口,6个为军口),这些重大专项是我国到2020年科技发展的重中之重。这中间还包括核心电子器件、高端通用芯片及基础软件,极大规模集成电路制造技术及成套工艺,新一代宽带无线移动通信,高档数字控制机床与基础制造技术,大型油气田及煤层气开发,大型先进压水堆及高温气冷堆核电站,水体污染控制与治理,大型飞机,高分辨率对地观测系统,载人航天与探月工程等核心技术产业。

  科技创新2030重点项目是国家科技重大专项的延续,以2030年为时间节点。科学技术创新2030包括航空发动机及燃气轮机、国家网络安全空间、深空探测及空间飞行器在轨服务与维护系统、煤炭清洁高效利用、智能电网、天地一体化信息网络、大数据、智能制造和机器人、重点新材料研发及应用,以及即将加入的“人工智能2.0”等重点项目。其中,航空发动机和燃气轮机专项和新一代人工智能项目已全面启动,量子通信和量子计算机、脑科学与类脑研究、深海空间站以及“天体一体化信息网络”已实施方案编制和评审。

  “天体一体化信息网络”是科学技术创新2030重点项目之一,方案论证由中国电科牵头。天地一体化信息网络由天基骨干网、天基接入网、地基节点网组成,并与地面互联网和移动通信网相互连通,建成“全球覆盖、随遇接入、按需服务、安全可信”的天地一体化信息网络体系。建成后,将使中国具备全球时空连续通信、高可靠安全通信、区域大容量通信、高机动全程信息传输等能力。天地一体化作为产业重要的研究项目,由政府支持并组织实施的重大战略产品研究开发、关键共性技术攻关或重大工程建设,以期在若干重点领域集中突破,实现科学技术创新的局部跨越式发展。天地一体化信息网络重大工程中,中国电科多次向国务院副总理、国家科技部部长、党组书记等上级领导汇报,并得到高度认可

  目前国内国有和民营的卫星星座计划整体呈现多点开花、分兵而战的格局,与Starlink的全产业链资源整合存在差距。2018年航天科技集团宣布全球低轨卫星星座通信系统“鸿雁星座”计划,分三期建设共计300余颗卫星,目前仅于2018年底成功发射首颗“鸿雁星座”。民营低轨通信卫星初创公司银河航天规划组建的“银河Galaxy”低轨宽带卫星星座,由上千颗自主研发的5G卫星组成近地轨道组成网络星座,2020年1月首发星成功发射。对比来看,Starlink计划不仅规划布局的12000颗卫星数量,其推进步伐也是大幅领先全球竞争对手,2020年3月,SpaceX再次为Starlink发射了60颗卫星(第六批次),星链计划在轨卫星共计达360颗。考虑到我国低轨卫星、运载火箭及其相关科学技术的一定差距,此次行业大发展中,拥有解决核心问题潜力的相关高校、企业和研究院等将担当主力,深度参与并直面挑战。

  在制造业整合和成本控制方面,我国空天通信产业相比Starlink等对手存在一定差距。国内对商业航天以及小卫星组网等技术的探索相对较晚,因此在星间链路激光通信、星群通信协议、Ku/Ka特别是Q/V波段(频谱资源和带宽更具前景)的射频器件、低成本相控阵天线G融合的空中接口传输技术、“大时延带宽积”条件下的端到端传输控制和拥塞管理、卫星网络边缘计算技术等软硬件技术方面,亟待提升和实践。

  对于特别有挑战的重大科学技术专项,我国推进策略传统上有整合现有优质资源,直接成立一家新的央企集团来承接一个历史任务的案例。目前以中航工业、中国商飞两家整机平台企业和中国航发一家发动机企业为主体的国内航空装备制造格局已然成型。

  航天科技的五院、八院是卫星制造的中坚力量,针对于这次卫星制造的顶层设计和颠覆性挑战,五院、八院自然当仁不让。

  从卫星产业趋势看,卫星本身的两极化发展明显——巨大化和微小化。2013年,DARPA设计了一种巨型间谍卫星,它将使迄今为止发射的所有空间望远镜相形见绌,这一叫做“薄膜光学即时成像器”(MOIRE)的卫星可以一次性捕捉地球40%的地表图像。因为颠覆性的采用光学薄膜代替玻璃作为光学元件,这种卫星将在发射前折叠镜面,之后于太空展开其超巨型的薄膜。薄膜光学即时成像器”(MOIRE)卫星将可在同步轨道获得近似于低轨道卫星的摄像精度。

  另一方面,微小化卫星的出现,可能更有颠覆性。他从理念、设计、选材方面不同于传统卫星产业,可能更像航天产业的另一个组成部分。而我国航天科工研制的“东风”系列导弹也是我国航天强国的重要组成部分,此次产业高质量发展机遇,航天科工也有望承担重要任务。

  生产线方面,此次卫星制造是史上颠覆性的批量生产,流水线批量生产更贴合导弹制造模式。纵观人类历史上所有航天器所有的数量,仍不足以满足Starlink计划的卫星需求,因此启用类似至少商用飞机甚至是汽车工业的自动化流水线以达到批产能力成为必然。Airbus给Oneweb的自动化卫星工厂便是参照汽车自动化流水线生产。这样的生产组织模式相较于卫星制造,反而可能更贴合重视成本和批产能力的绝大多数导弹制造流水线。

  目前航天科工二院的筹备工作已取得一定进展。2020年1月,伴随着主楼顶板混凝土的浇筑完成,由航天科工二院空间工程公司自主建设的武汉卫星产业园一期建设项目整体的结构历经180多个工作日顺利封顶,为2020年9月形成投产能力奠定了基础。这一卫星产业园于2019年4月24日开工建设,旨在打造全球首个基于云的小卫星科研生产基地和集研发设计、总装集成、测试试验一体化的卫星智慧产业园,形成每年百颗卫星的生产能力。

  武汉卫星产业园工程之前,航天科工已在技术积累和产业规划上做好了充分准备。2011年,航天科工二院便成立了空间技术研究与发展中心,这也是航天科工二院空间工程公司的前身。现如今,航天科工二院空间工程公司已具备了完整的卫星总体设计研发的能力,在结构、热控等核心专业领域取得了相当的基础,并支撑了航天科工“虹云”低轨通信卫星的研制。

  此外,在卫星发射方面,航天科工和航天科技集团正在研制新一代低成本火箭。其中,航天科技集团所研制的新一代具备可回收能力的运载火箭,报价有望降至每公斤5000美元水平(约3万人民币)。而航天科技集团则表示,正在研制世界最大的固体燃料运载火箭,其发射成本也将降低到每公斤1万美元以下。

  卫星研制产业之外,中国电科有望成为卫星通信技术的骨干力量。卫星通信的本质仍然是通信,关键是实现通信功能,卫星发挥类似于地面通信的铁塔和基站的作用。通信技术和通信射频器件等产业,中国电科有着雄厚的技术积累和全产业链覆盖能力,将在此次低轨卫星通信互联网中发挥及其重要的作用,当然,航天科技、航天科工、中国电子集团在通信技术和电子器件方面也将迎来重大机遇。

  (1)中国电科在科技2030重大专项“天地一体化信息网络”中地位突出。2018年12月,中国电科,天地一体化信息网络先导试验网络总体方案通过评审。作为重点项目先行部分,2019年3月,天地一体化信息网络地面信息港原型系统正式上线年,中国电科天地一体化信息网络重点项目试验试用系统第一阶段研发完成,由中国电科54所牵头研制的“天象”试验1星、2星发射成功。

  (2)电科通信,经营事物的规模广,产业链完整,综合竞争优势显著。中电网络通信有限公司(CETCNetwork&CommunicationsCo.Ltd,简称CENC,电科通信),成立于2017年。年收入预计在200至300亿间(2017年收入200亿元),由中国电子科技集团的五个通信类研究所(第7研究所、第34研究所、第39研究所、第50研究所、第54研究所)及其所属企业组成,其中有上市公司一家(杰赛科技)。分布在广州、桂林、西安、上海、石家庄、北京、深圳等地的16个园区。

  迄今为止,涉及中国所有航天器或者航天活动的通信,电科全部参与,尤其是卫星通信、卫星测控和地面的运营控制,中国电科和电科通信地位突出。

  。54所提出了我国第一套MF-TDMA及MF-TDMA/FDMA融合卫星通信体制,完成了自主可控系统设备,填补国内空白;研制了我国新一代宽带卫星通信应用运控系统;研制并创建了我国首个卫星移动通信运控体系,突破星载大口径多波束天线的高精度标校等关键技术,为系统面向30万用户更好的提供运营级服务奠定基础。天舟任务中,中国电科54所研制的通信系统包括天链一号中继星系统、载人航天卫星通信系统、天地数字电视编解码系统、载人航天实况电视系统、载人航天试验任务IP网等确保了任务的精准实施。

  2017年12月19日,由54所卫通专业部承研的天通一号卫星移动通信系统民用信关站交付试运行该信关站由卫星接入网、核心网、业务系统和支撑系统组成,是我国自主研制的天通一号卫星移动通信系统核心通信设施,也是国内首个支持电信运营级应用与服务的大型卫星通信地面站。该站具备支持覆盖领土和领海111个卫星波束同时通信的能力,可支持卫星手机和卫星手机之间、卫星手机和地面其它通信设施之间的话音和数据通信。此次天象低轨小卫星星座也突破了高精度接收、精密定轨与授时、信号与信息增强等关键技术,构建了国内首个低轨增强运控原型系统和地面监测评估系统。

  中国电科和电科通信在通信相关航天用元器件、分系统等方面同样有着非常明显优势。

  通信子集团54所作为卫星的民用应用系统总体,研发了国内商用卫星第一个多模基带和多模芯片,发布了“天通一号”卫星移动通信系统基带和射频芯片。中国电科为实践二十号卫星通信转发器配备了目前中国通信卫星使用的上限功率和最高频率的毫米波微波器件——Ka波段100W空间行波管和Q波段空间行波管,可有效提升卫星传输信息的速度,大幅度降低误码率。

  2018年,电科54所成功自主研发两款不同频段的大功率固态功放用于卫星通信,兼具维修方便、可靠性更高、寿命更加长等优点,扭转了我国该设备长期依赖进口的局面。此外,中国电科集团其它单位为实践二十号卫星特制的一套超高能电源系统——量身定制的太阳电池阵+特别研发的锂离子蓄电池组。其中,首次应用的全新太阳电池阵,产品由南、北两个太阳翼由太阳电池板和连接架组成,是中国在高轨道首次应用半刚性太阳电池阵,产品技术达到国际领先水平;同为首次应用的全新锂离子蓄电池组,应用大幅减轻整星重量达到25%,具有更高的比能量和更长的工作寿命,是当前中国卫星应用比能量最高、设计寿命最长的空间储能电源产品。

  中国电科为实践二十号卫星矢量推进器指向机构,量身定做出混合式步进电动机和无刷双通道旋变发送机等两型电机产品,不仅体积小、精度高,还能适应低电压、高温度差的外部环境。中国电科为长征五号火箭助推器发动机配备全新设计的助推伺服控制器;为火箭应答机配备C波段锁频振荡磁控管;为火箭各个系统配备14种电源及滤波器产品;为火箭系统提供六大类17种型号规格近200只传感器,大多数都用在温度、压力、压差、振动、过载等参数的精准测量;为发射任务配套有三种型号的射频光调射频光调制解调模块。

  中电力神集团及成员单位18所在我国电能源行业处于领头羊,是我国卫星、导弹等重大科学技术项目的主要电源配套单位。

  其中18所是是我国化学与物理电源行业中成立最早、顶级规模、专业覆盖面最广、开发能力最强、科学技术水平最高、产品类别最多、技术实力丰沛雄厚的综合性化学与物理电源研究所。18所自1958年建所以来,为我国第一颗卫星、第一颗、第一条电动鱼雷等和各种各样不同型号卫星及多项国家重点工程提供了高技术、高质量、高可靠的电源产品。中电力神集团于19年挂牌,由18所、力神电池、蓝天太阳、空间电源、中电新能源5家成员单位组建。

  中电科能源股份公司(*ST电能)是力神集团旗下唯一上市公司,经过19年资产重组,目前已确立空间和通信电能源产品主业。

  *ST电能19年由兵器集团转让中电力神集团,目前已完成原摩托车业务资产的出售,同时置入了大股东力神集团下属的空间能源和力神特电两家公司。其中空间能源系为承接18所第2研究室的特种锂离子电源经营性资产及业务而设立,在国内空间储能电池领域占有超过50%的市场占有率,技术力量雄厚,其空间储能电源产品在通信卫星、导航卫星、高分卫星、遥感卫星以及其他科学试验飞行器上得到普遍应用。力神特电成立于2008年,前身为力神股份旗下特种电源事业部,力神特电是国内最大的特种通信装备和特种便携式无人机用锂离子电池组供应商。在国内特种通信锂离子电池组研发过程中,90%以上的型号由力神特电担任组长单位牵头研发。除空间能源和力神特电外,大股东力神集团拥有较多优质电能源资产。

  此外,中国电科集团研发的短波红外探测组件以及为变换器电路等核心器件为我国航天事业发展提供支撑。实践二十号卫星重要载荷之一的红外相机核心器件——短波红外探测器组件由中国电科自主研制提供,该组件是将接收的红外信号转换成电信号的关键元器件。中国电科43研究所为“嫦娥四号”提供高压抗辐照空间DC/DC变换器电路,应用在探测器的激光测距敏感器和激光三维成像敏感器中,为敏感器提供高压供电,成为敏感器中的关键元器件。

...。


上一篇:电科41所发明专利获国家奖
下一篇:领克acc自适应巡航是第几代

相关产品

  • 掉电快、不耐用、容易坏?2021十大电动车电池品牌TOP排行榜!
    掉电快、不耐用、容易坏?2021十大电动车电池品牌TOP排行榜!
    查看详情
  • 硬核!中国长城将成特种锂电池供货商为新基建供给新动力支撑
    硬核!中国长城将成特种锂电池供货商为新基建供给新动力支撑
    查看详情
  • 电动车换电池不踩雷国内锂电池品牌推荐榜!
    电动车换电池不踩雷国内锂电池品牌推荐榜!
    查看详情
  • 蒲迅电池超市火热来袭消费者选购锂电池更有保障!
    蒲迅电池超市火热来袭消费者选购锂电池更有保障!
    查看详情